Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Microbiol ; 14: 1148255, 2023.
Article in English | MEDLINE | ID: covidwho-2294815

ABSTRACT

The ongoing evolution of SARS-CoV-2 continues to raise new questions regarding the duration of immunity to reinfection with emerging variants. To address these knowledge gaps, controlled investigations in established animal models are needed to assess duration of immunity induced by each SARS-CoV-2 lineage and precisely evaluate the extent of cross-reactivity and cross-protection afforded. Using the Syrian hamster model, we specifically investigated duration of infection acquired immunity to SARS-CoV-2 ancestral Wuhan strain over 12 months. Plasma spike- and RBD-specific IgG titers against ancestral SARS-CoV-2 peaked at 4 months post-infection and showed a modest decline by 12 months. Similar kinetics were observed with plasma virus neutralizing antibody titers which peaked at 2 months post-infection and showed a modest decline by 12 months. Reinfection with ancestral SARS-CoV-2 at regular intervals demonstrated that prior infection provides long-lasting immunity as hamsters were protected against severe disease when rechallenged at 2, 4, 6, and 12 months after primary infection, and this coincided with the induction of high virus neutralizing antibody titers. Cross-neutralizing antibody titers against the B.1.617.2 variant (Delta) progressively waned in blood over 12 months, however, re-infection boosted these titers to levels equivalent to ancestral SARS-CoV-2. Conversely, cross-neutralizing antibodies to the BA.1 variant (Omicron) were virtually undetectable at all time-points after primary infection and were only detected following reinfection at 6 and 12 months. Collectively, these data demonstrate that infection with ancestral SARS-CoV-2 strains generates antibody responses that continue to evolve long after resolution of infection with distinct kinetics and emergence of cross-reactive and cross-neutralizing antibodies to Delta and Omicron variants and their specific spike antigens.

2.
Viruses ; 14(10)2022 10 16.
Article in English | MEDLINE | ID: covidwho-2071843

ABSTRACT

Small animal models that accurately model pathogenesis of SARS-CoV-2 variants are required for ongoing research efforts. We modified our human immune system mouse model to support replication of SARS-CoV-2 by implantation of human lung tissue into the mice to create TKO-BLT-Lung (L) mice and compared infection with two different variants in a humanized lung model. Infection of TKO-BLT-L mice with SARS-CoV-2 recapitulated the higher infectivity of the B.1.1.7 variant with more animals becoming infected and higher sustained viral loads compared to mice challenged with an early B lineage (614D) virus. Viral lesions were observed in lung organoids but no differences were detected between the viral variants as expected. Partially overlapping but distinct immune profiles were also observed between the variants with a greater Th1 profile in VIDO-01 and greater Th2 profile in B.1.1.7 infection. Overall, the TKO-BLT-L mouse supported SARS-CoV-2 infection, recapitulated key known similarities and differences in infectivity and pathogenesis as well as revealing previously unreported differences in immune responses between the two viral variants. Thus, the TKO-BLT-L model may serve as a useful animal model to study the immunopathobiology of newly emerging variants in the context of genuine human lung tissue and immune cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Humans , Animals , SARS-CoV-2/genetics , Viral Load , Disease Models, Animal , Lung
3.
Sci Rep ; 12(1): 16956, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2062264

ABSTRACT

In late 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus emerged in China and quickly spread into a worldwide pandemic. It has caused millions of hospitalizations and deaths, despite the use of COVID-19 vaccines. Convalescent plasma and monoclonal antibodies emerged as major therapeutic options for treatment of COVID-19. We have developed an anti-SARS-CoV-2 immunoglobulin intravenous (Human) (COVID-HIGIV), a potential improvement from using convalescent plasma. In this report the efficacy of COVID-HIGIV was evaluated in hamster and mouse models of SARS-CoV-2 infection. COVID-HIGIV treatment in both mice and hamsters significantly reduced the viral load in the lungs. Among COVID-HIGIV treated animals, infection-related body weight loss was reduced and the animals regained their baseline body weight faster than the PBS controls. In hamsters, COVID-HIGIV treatment reduced infection-associated lung pathology including lung inflammation, and pneumocyte hypertrophy in the lungs. These results support ongoing trials for outpatient treatment with COVID-HIGIV for safety and efficacy evaluation (NCT04910269, NCT04546581).


Subject(s)
COVID-19 , Animals , Antibodies, Monoclonal , COVID-19/therapy , COVID-19 Vaccines , Clinical Trials as Topic , Cricetinae , Disease Models, Animal , Humans , Immunization, Passive , Lung/pathology , Mice , SARS-CoV-2 , COVID-19 Serotherapy
4.
Sci Rep ; 12(1): 9045, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1873542

ABSTRACT

Long-term antibody responses to SARS-CoV-2 have focused on responses to full-length spike protein, specific domains within spike, or nucleoprotein. In this study, we used high-density peptide microarrays representing the complete proteome of SARS-CoV-2 to identify binding sites (epitopes) targeted by antibodies present in the blood of COVID-19 resolved cases at 5 months post-diagnosis. Compared to previous studies that evaluated epitope-specific responses early post-diagnosis (< 60 days), we found that epitope-specific responses to nucleoprotein and spike protein have contracted, and that responses to membrane protein have expanded. Although antibody titers to full-length spike and nucleoprotein remain steady over months, taken together our data suggest that the population of epitope-specific antibodies that contribute to this reactivity is dynamic and evolves over time. Further, the spike epitopes bound by polyclonal antibodies in COVID-19 convalescent serum samples aligned with known target sites that can neutralize viral activity suggesting that the maintenance of these antibodies might provide rapid serological immunity. Finally, the most dominant epitopes for membrane protein and spike showed high diagnostic accuracy providing novel biomarkers to refine blood-based antibody tests. This study provides new insights into the specific regions of SARS-CoV-2 targeted by serum antibodies long after infection.


Subject(s)
Antibodies, Viral , COVID-19 , Convalescence , Antibodies, Viral/blood , COVID-19/blood , COVID-19/therapy , Coronavirus Nucleocapsid Proteins , Epitopes , Humans , Immunization, Passive , Phosphoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1671749

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
6.
Pathogens ; 10(11)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524103

ABSTRACT

(1) Background: There is a strong need for prevention and treatment strategies for COVID-19 that are not impacted by SARS-CoV-2 mutations emerging in variants of concern. After virus infection, host ER resident sigma receptors form direct interactions with non-structural SARS-CoV-2 proteins present in the replication complex. (2) Methods: In this work, highly specific sigma receptor ligands were investigated for their ability to inhibit both SARS-CoV-2 genome replication and virus induced cellular toxicity. This study found antiviral activity associated with agonism of the sigma-1 receptor (e.g., SA4503), ligation of the sigma-2 receptor (e.g., CM398), and a combination of the two pathways (e.g., AZ66). (3) Results: Intermolecular contacts between these ligands and sigma receptors were identified by structural modeling. (4) Conclusions: Sigma receptor ligands and drugs with off-target sigma receptor binding characteristics were effective at inhibiting SARS-CoV-2 infection in primate and human cells, representing a potential therapeutic avenue for COVID-19 prevention and treatment.

7.
Sci Rep ; 11(1): 14536, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315609

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) hospitalizations and deaths disportionally affect males and older ages. Here we investigated the impact of male sex and age comparing sex-matched or age-matched ferrets infected with SARS-CoV-2. Differences in temperature regulation was identified for male ferrets which was accompanied by prolonged viral replication in the upper respiratory tract after infection. Gene expression analysis of the nasal turbinates indicated that 1-year-old female ferrets had significant increases in interferon response genes post infection which were delayed in males. These results provide insight into COVID-19 and suggests that older males may play a role in viral transmission due to decreased antiviral responses.


Subject(s)
COVID-19/virology , Ferrets/virology , Interferons/metabolism , Age Factors , Animals , Antibodies, Viral , COVID-19/metabolism , Disease Models, Animal , Female , Ferrets/metabolism , Host Microbial Interactions , Interferons/genetics , Male , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Sex Factors , Viral Load , Virus Replication
8.
Sci Rep ; 10(1): 7257, 2020 04 29.
Article in English | MEDLINE | ID: covidwho-154662

ABSTRACT

Coronaviruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are speculated to have originated in bats. The mechanisms by which these viruses are maintained in individuals or populations of reservoir bats remain an enigma. Mathematical models have predicted long-term persistent infection with low levels of periodic shedding as a likely route for virus maintenance and spillover from bats. In this study, we tested the hypothesis that bat cells and MERS coronavirus (CoV) can co-exist in vitro. To test our hypothesis, we established a long-term coronavirus infection model of bat cells that are persistently infected with MERS-CoV. We infected cells from Eptesicus fuscus with MERS-CoV and maintained them in culture for at least 126 days. We characterized the persistently infected cells by detecting virus particles, protein and transcripts. Basal levels of type I interferon in the long-term infected bat cells were higher, relative to uninfected cells, and disrupting the interferon response in persistently infected bat cells increased virus replication. By sequencing the whole genome of MERS-CoV from persistently infected bat cells, we identified that bat cells repeatedly selected for viral variants that contained mutations in the viral open reading frame 5 (ORF5) protein. Furthermore, bat cells that were persistently infected with ΔORF5 MERS-CoV were resistant to superinfection by wildtype virus, likely due to reduced levels of the virus receptor, dipeptidyl peptidase 4 (DPP4) and higher basal levels of interferon in these cells. In summary, our study provides evidence for a model of coronavirus persistence in bats, along with the establishment of a unique persistently infected cell culture model to study MERS-CoV-bat interactions.


Subject(s)
Chiroptera/virology , Coronavirus Infections/virology , Eulipotyphla/virology , Fibroblasts/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Open Reading Frames/genetics , Point Mutation , Animals , Chiroptera/anatomy & histology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins , Dipeptidyl Peptidase 4/metabolism , Eulipotyphla/anatomy & histology , Fibroblasts/metabolism , Genome, Viral/genetics , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Kidney/cytology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Nucleocapsid Proteins/genetics , Receptors, Virus/metabolism , Transfection , Vero Cells , Virus Replication/genetics , Whole Genome Sequencing
9.
J Infect Dev Ctries ; 14(1): 3-17, 2020 01 31.
Article in English | MEDLINE | ID: covidwho-1512

ABSTRACT

On 31 December 2019 the Wuhan Health Commission reported a cluster of atypical pneumonia cases that was linked to a wet market in the city of Wuhan, China. The first patients began experiencing symptoms of illness in mid-December 2019. Clinical isolates were found to contain a novel coronavirus with similarity to bat coronaviruses. As of 28 January 2020, there are in excess of 4,500 laboratory-confirmed cases, with > 100 known deaths. As with the SARS-CoV, infections in children appear to be rare. Travel-related cases have been confirmed in multiple countries and regions outside mainland China including Germany, France, Thailand, Japan, South Korea, Vietnam, Canada, and the United States, as well as Hong Kong and Taiwan. Domestically in China, the virus has also been noted in several cities and provinces with cases in all but one provinence. While zoonotic transmission appears to be the original source of infections, the most alarming development is that human-to-human transmission is now prevelant. Of particular concern is that many healthcare workers have been infected in the current epidemic. There are several critical clinical questions that need to be resolved, including how efficient is human-to-human transmission? What is the animal reservoir? Is there an intermediate animal reservoir? Do the vaccines generated to the SARS-CoV or MERS-CoV or their proteins offer protection against 2019-nCoV? We offer a research perspective on the next steps for the generation of vaccines. We also present data on the use of in silico docking in gaining insight into 2019-nCoV Spike-receptor binding to aid in therapeutic development. Diagnostic PCR protocols can be found at https://www.who.int/health-topics/coronavirus/laboratory-diagnostics-for-novel-coronavirus.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Disease Reservoirs/veterinary , Disease Transmission, Infectious , Pneumonia, Viral/transmission , Animals , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Reservoirs/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Sequence Analysis, Protein , Travel , Vaccination , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Vaccines , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL